Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.

Identifieur interne : 000177 ( Main/Exploration ); précédent : 000176; suivant : 000178

An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.

Auteurs : Naoki Shigi [Japon] ; Masaki Horitani [Japon] ; Kenjyo Miyauchi [Japon] ; Tsutomu Suzuki [Japon] ; Misao Kuroki [Japon]

Source :

RBID : pubmed:31801798

Descripteurs français

English descriptors

Abstract

Transfer RNA (tRNA) is an adaptor molecule indispensable for assigning amino acids to codons on mRNA during protein synthesis. 2-thiouridine (s2U) derivatives in the anticodons (position 34) of tRNAs for glutamate, glutamine, and lysine are post-transcriptional modifications essential for precise and efficient codon recognition in all organisms. s2U34 is introduced either by (i) bacterial MnmA/eukaryote mitochondrial Mtu1 or (ii) eukaryote cytosolic Ncs6/archaeal NcsA, and the latter enzymes possess iron-sulfur (Fe-S) cluster. Here, we report the identification of novel-type MnmA homologs containing three conserved Cys residues, which could support Fe-S cluster binding and catalysis, in a broad range of bacteria, including thermophiles, Cyanobacteria, Mycobacteria, Actinomyces, Clostridium, and Helicobacter Using EPR spectroscopy, we revealed that Thermus thermophilus MnmA (TtMnmA) contains an oxygen-sensitive [4Fe-4S]-type cluster. Efficient in vitro formation of s2U34 in tRNALys and tRNAGln by holo-TtMnmA occurred only under anaerobic conditions. Mutational analysis of TtMnmA suggested that the Fe-S cluster is coordinated by the three conserved Cys residues (Cys105, Cys108, and Cys200), and is essential for its activity. Evolutionary scenarios for the sulfurtransferases, including the Fe-S cluster containing Ncs6/NcsA s2U thiouridylases and several distantly related sulfurtransferases, are proposed.

DOI: 10.1261/rna.072066.119
PubMed: 31801798
PubMed Central: PMC7025502


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.</title>
<author>
<name sortKey="Shigi, Naoki" sort="Shigi, Naoki" uniqKey="Shigi N" first="Naoki" last="Shigi">Naoki Shigi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horitani, Masaki" sort="Horitani, Masaki" uniqKey="Horitani M" first="Masaki" last="Horitani">Masaki Horitani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Department of Applied Biochemistry and Food Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Department of Applied Biochemistry and Food Science, Saga University, 1 Honjo-machi, Saga 840-8502</wicri:regionArea>
<wicri:noRegion>Saga 840-8502</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miyauchi, Kenjyo" sort="Miyauchi, Kenjyo" uniqKey="Miyauchi K" first="Kenjyo" last="Miyauchi">Kenjyo Miyauchi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Tsutomu" sort="Suzuki, Tsutomu" uniqKey="Suzuki T" first="Tsutomu" last="Suzuki">Tsutomu Suzuki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuroki, Misao" sort="Kuroki, Misao" uniqKey="Kuroki M" first="Misao" last="Kuroki">Misao Kuroki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31801798</idno>
<idno type="pmid">31801798</idno>
<idno type="doi">10.1261/rna.072066.119</idno>
<idno type="pmc">PMC7025502</idno>
<idno type="wicri:Area/Main/Corpus">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000182</idno>
<idno type="wicri:Area/Main/Curation">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000182</idno>
<idno type="wicri:Area/Main/Exploration">000182</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.</title>
<author>
<name sortKey="Shigi, Naoki" sort="Shigi, Naoki" uniqKey="Shigi N" first="Naoki" last="Shigi">Naoki Shigi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horitani, Masaki" sort="Horitani, Masaki" uniqKey="Horitani M" first="Masaki" last="Horitani">Masaki Horitani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Department of Applied Biochemistry and Food Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Department of Applied Biochemistry and Food Science, Saga University, 1 Honjo-machi, Saga 840-8502</wicri:regionArea>
<wicri:noRegion>Saga 840-8502</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miyauchi, Kenjyo" sort="Miyauchi, Kenjyo" uniqKey="Miyauchi K" first="Kenjyo" last="Miyauchi">Kenjyo Miyauchi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Tsutomu" sort="Suzuki, Tsutomu" uniqKey="Suzuki T" first="Tsutomu" last="Suzuki">Tsutomu Suzuki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuroki, Misao" sort="Kuroki, Misao" uniqKey="Kuroki M" first="Misao" last="Kuroki">Misao Kuroki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="eISSN">1469-9001</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anticodon (genetics)</term>
<term>Codon (genetics)</term>
<term>Cyanobacteria (genetics)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Glutamic Acid (genetics)</term>
<term>Glutamine (genetics)</term>
<term>Iron (metabolism)</term>
<term>Lysine (genetics)</term>
<term>Mycobacterium (genetics)</term>
<term>RNA, Transfer (genetics)</term>
<term>Sulfur (metabolism)</term>
<term>Sulfurtransferases (chemistry)</term>
<term>Sulfurtransferases (genetics)</term>
<term>Thiouridine (analogs & derivatives)</term>
<term>Thiouridine (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>4-Thiouridine (analogues et dérivés)</term>
<term>4-Thiouridine (métabolisme)</term>
<term>ARN de transfert (génétique)</term>
<term>Acide glutamique (génétique)</term>
<term>Anticodon (génétique)</term>
<term>Codon (génétique)</term>
<term>Cyanobactéries (génétique)</term>
<term>Escherichia coli (génétique)</term>
<term>Fer (métabolisme)</term>
<term>Glutamine (génétique)</term>
<term>Lysine (génétique)</term>
<term>Mycobacterium (génétique)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Soufre (métabolisme)</term>
<term>Sulfurtransferases (composition chimique)</term>
<term>Sulfurtransferases (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Thiouridine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Anticodon</term>
<term>Codon</term>
<term>Escherichia coli Proteins</term>
<term>Glutamic Acid</term>
<term>Glutamine</term>
<term>Lysine</term>
<term>RNA, Transfer</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>4-Thiouridine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cyanobacteria</term>
<term>Escherichia coli</term>
<term>Mycobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN de transfert</term>
<term>Acide glutamique</term>
<term>Anticodon</term>
<term>Codon</term>
<term>Cyanobactéries</term>
<term>Escherichia coli</term>
<term>Glutamine</term>
<term>Lysine</term>
<term>Mycobacterium</term>
<term>Protéines Escherichia coli</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron</term>
<term>Sulfur</term>
<term>Thiouridine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>4-Thiouridine</term>
<term>Fer</term>
<term>Soufre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transfer RNA (tRNA) is an adaptor molecule indispensable for assigning amino acids to codons on mRNA during protein synthesis. 2-thiouridine (s
<sup>2</sup>
U) derivatives in the anticodons (position 34) of tRNAs for glutamate, glutamine, and lysine are post-transcriptional modifications essential for precise and efficient codon recognition in all organisms. s
<sup>2</sup>
U34 is introduced either by (i) bacterial MnmA/eukaryote mitochondrial Mtu1 or (ii) eukaryote cytosolic Ncs6/archaeal NcsA, and the latter enzymes possess iron-sulfur (Fe-S) cluster. Here, we report the identification of novel-type MnmA homologs containing three conserved Cys residues, which could support Fe-S cluster binding and catalysis, in a broad range of bacteria, including thermophiles,
<i>Cyanobacteria</i>
,
<i>Mycobacteria</i>
,
<i>Actinomyces</i>
,
<i>Clostridium</i>
, and
<i>Helicobacter</i>
Using EPR spectroscopy, we revealed that
<i>Thermus thermophilus</i>
MnmA (TtMnmA) contains an oxygen-sensitive [4Fe-4S]-type cluster. Efficient in vitro formation of s
<sup>2</sup>
U34 in tRNA
<sup>Lys</sup>
and tRNA
<sup>Gln</sup>
by holo-TtMnmA occurred only under anaerobic conditions. Mutational analysis of TtMnmA suggested that the Fe-S cluster is coordinated by the three conserved Cys residues (Cys105, Cys108, and Cys200), and is essential for its activity. Evolutionary scenarios for the sulfurtransferases, including the Fe-S cluster containing Ncs6/NcsA s
<sup>2</sup>
U thiouridylases and several distantly related sulfurtransferases, are proposed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31801798</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-9001</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.</ArticleTitle>
<Pagination>
<MedlinePgn>240-250</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1261/rna.072066.119</ELocationID>
<Abstract>
<AbstractText>Transfer RNA (tRNA) is an adaptor molecule indispensable for assigning amino acids to codons on mRNA during protein synthesis. 2-thiouridine (s
<sup>2</sup>
U) derivatives in the anticodons (position 34) of tRNAs for glutamate, glutamine, and lysine are post-transcriptional modifications essential for precise and efficient codon recognition in all organisms. s
<sup>2</sup>
U34 is introduced either by (i) bacterial MnmA/eukaryote mitochondrial Mtu1 or (ii) eukaryote cytosolic Ncs6/archaeal NcsA, and the latter enzymes possess iron-sulfur (Fe-S) cluster. Here, we report the identification of novel-type MnmA homologs containing three conserved Cys residues, which could support Fe-S cluster binding and catalysis, in a broad range of bacteria, including thermophiles,
<i>Cyanobacteria</i>
,
<i>Mycobacteria</i>
,
<i>Actinomyces</i>
,
<i>Clostridium</i>
, and
<i>Helicobacter</i>
Using EPR spectroscopy, we revealed that
<i>Thermus thermophilus</i>
MnmA (TtMnmA) contains an oxygen-sensitive [4Fe-4S]-type cluster. Efficient in vitro formation of s
<sup>2</sup>
U34 in tRNA
<sup>Lys</sup>
and tRNA
<sup>Gln</sup>
by holo-TtMnmA occurred only under anaerobic conditions. Mutational analysis of TtMnmA suggested that the Fe-S cluster is coordinated by the three conserved Cys residues (Cys105, Cys108, and Cys200), and is essential for its activity. Evolutionary scenarios for the sulfurtransferases, including the Fe-S cluster containing Ncs6/NcsA s
<sup>2</sup>
U thiouridylases and several distantly related sulfurtransferases, are proposed.</AbstractText>
<CopyrightInformation>© 2020 Shigi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shigi</LastName>
<ForeName>Naoki</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0003-4452-8264</Identifier>
<AffiliationInfo>
<Affiliation>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horitani</LastName>
<ForeName>Masaki</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-8881-0600</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture, Department of Applied Biochemistry and Food Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miyauchi</LastName>
<ForeName>Kenjyo</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>Tsutomu</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-9731-1731</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuroki</LastName>
<ForeName>Misao</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C105273">2-thiouridine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000926">Anticodon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>13957-31-8</RegistryNumber>
<NameOfSubstance UI="D013891">Thiouridine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-25-9</RegistryNumber>
<NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.61</RegistryNumber>
<NameOfSubstance UI="C510958">MnmA protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.8.1.-</RegistryNumber>
<NameOfSubstance UI="D013466">Sulfurtransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000926" MajorTopicYN="N">Anticodon</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000458" MajorTopicYN="N">Cyanobacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009161" MajorTopicYN="N">Mycobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012343" MajorTopicYN="N">RNA, Transfer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013466" MajorTopicYN="N">Sulfurtransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013891" MajorTopicYN="N">Thiouridine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">biosynthesis</Keyword>
<Keyword MajorTopicYN="Y">iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">post-transcriptional modification</Keyword>
<Keyword MajorTopicYN="Y">sulfurtransferase</Keyword>
<Keyword MajorTopicYN="Y">tRNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31801798</ArticleId>
<ArticleId IdType="pii">rna.072066.119</ArticleId>
<ArticleId IdType="doi">10.1261/rna.072066.119</ArticleId>
<ArticleId IdType="pmc">PMC7025502</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proteins. 1994 Dec;20(4):347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7731953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2014;11(12):1495-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25607529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Mar 2;416(4):467-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22227389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 10;283(41):27469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18664566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Inform. 2010;24:104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22081593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 1999 Dec;4(6):727-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 May;28(10):3301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jan 6;21(1):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Sep 25;258(18):11106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6309830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Nov 01;9:2679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30450093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Dec 10;258(23):14284-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6315725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Oct 8;24(21):5711-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3853464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1970 Aug 24;40(4):866-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4924671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 12;458(7235):228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19145231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1974 Jul 1;43(1):59-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4369142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jul 5;271(27):16068-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8663056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2018 Dec 17;46(6):1593-1603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30381339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jan 21;7:10457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26791911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Sep 3;20(17):4794-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jan 14;280(2):1613-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2016 Aug;73(16):3075-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27094388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1973 Oct 23;12(22):4331-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4584321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Clin Lab Invest. 2003;63(7-8):489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14743958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Aug;13(8):1245-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17592039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12703-12708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2013 Jul;81(7):1232-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23444054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Nov 10;252(21):7424-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">410804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2015 Jun;197(11):1952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25825430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2014 Apr 02;5:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24765101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Jun 25;262(18):8488-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3298234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jun 28;33(25):7869-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7516708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5459-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Dec 17;27(24):3267-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19037260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D303-D307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29106616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11067-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23776221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1989;180:51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2482430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2016 Dec;590(24):4628-4637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27878988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 Apr 26;139(16):5857-5864</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28368583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Sep 28;43(38):12220-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15379560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2017 Sep 2;14(9):1209-1222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28277930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7355-7360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28655838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Sep 3;20(17):4863-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2000 Jun;5(3):369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10907748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 19;281(20):14296-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2015;560:19-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26253964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 Apr 23;114(8):4229-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24476342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jul 27;442(7101):419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16871210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2000 Sep;5(9):689-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10971651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Nov 20;284(1):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Aug;82(15):4905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3860833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29788355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1999 Feb;5(2):188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10024171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2006 Jan;178(1):42-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jun 18;161(7):1606-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26052047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jan 27;281(4):2104-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2013 Oct 23;425(20):3888-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 22;19(2):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16039592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 13;279(33):34123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Feb 4;42(4):1109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12549933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 06;9(6):e99104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24906001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1985 Apr 22;183(2):206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Oct 26;287(44):36683-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22904325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 1;27(3):343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21134891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2018 Oct 20;6(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30347855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 May 9;114(19):4954-4959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28439027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1968 Sep 13;161(3846):1146-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17812290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1975 Oct 10;250(19):7842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">170272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Mar;37(4):1335-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Shigi, Naoki" sort="Shigi, Naoki" uniqKey="Shigi N" first="Naoki" last="Shigi">Naoki Shigi</name>
</region>
<name sortKey="Horitani, Masaki" sort="Horitani, Masaki" uniqKey="Horitani M" first="Masaki" last="Horitani">Masaki Horitani</name>
<name sortKey="Kuroki, Misao" sort="Kuroki, Misao" uniqKey="Kuroki M" first="Misao" last="Kuroki">Misao Kuroki</name>
<name sortKey="Miyauchi, Kenjyo" sort="Miyauchi, Kenjyo" uniqKey="Miyauchi K" first="Kenjyo" last="Miyauchi">Kenjyo Miyauchi</name>
<name sortKey="Suzuki, Tsutomu" sort="Suzuki, Tsutomu" uniqKey="Suzuki T" first="Tsutomu" last="Suzuki">Tsutomu Suzuki</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000177 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000177 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31801798
   |texte=   An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31801798" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020